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DISTRIBUTION OF DISPERSE-PHASE VAPORS IN A 

HIGH'TEMPERATURE GAS FLOW 

D. I. Lamden and O. G. Stonik UDC 5.32.525.3 

The distribution of disperse-phase vapors is obtained in the ease where this phase 
is introduced unevenly into the flow. 

The design and analysis of a whole range of production processes requires knowledge of 
the distribution of disperse-phase vapors in a gas flow when the disperse phase is intro- 
duced unevenly into the flow in space. Such introduction naturally leads to a significantly 
nonuniform distribution of the disperse fraction along and across the flow [I]. 

It was shown in [2] that the evaporation of drops (particles) occurs much more slowly 
than their deceleration within a broad range of flow parameters. Thus, the problem of deter- 
mining the distribution of a disperse phase and its vapors in a gas flow can be broken down 
into two steps. First we find the mass distribution function of the polydisperse condensed 
phase in the flow without allowance for the change in the diameters of its constituent parti- 
cles. We then solve the problem of determining the distribution of the vapor in the gas flow 
with sources prescribed by the particle distribution function with allowance for polydispers- 
ity and differences in the dynamics of evaporation of different-size particles. The study 
[i] obtained a mass distribution function gm(r, 6) for a disperse phase in a gas flow (the 
mass of drops with diameters from 6 to 6 + d~ in a volume element dV containing a point with 
the coordinate r is given as dm = gm(r, ~)'d~dV). 

In selecting a model for the diffusion process, we note that the rate of molecular dif- 
fusion is too low and that during the time the vapor has been carried several meters by the 
flow it has diffused by fractions of a millimeter across the flow. As regards turbulent diffu- 
sion, it is intense in the core of the flow but approaches zero going toward the wall. Thus, 
in this region diffusive transport across the flow becomes less than convective transport 
along the flow. This fact allows us to ignore the effect of the walls and to thereby reduce 
the diffusion boundary-value problem to a Cauchy problem. It should also be noted that the 
turbulent diffusion in a developed flow is almost constant up to distances on the order of 
20% of the tube radius going from the tube wall [3]. Moreover, agitating grids are often 
used, which leads to equalization of the turbulent diffusion coefficients across the flow. 
Thus, in solving the diffusion problem, we will assume it to be constant. 

We choose the coordinate system as follows: the X axis is directed along the gas flow, 
the Y axis is directed over the diameter of the gas flow from the wall to the core, and the 
Z axis is directed perpendicular to the XY plane. Then, with allowance for the above assump- 
tions, the steady-state problem of determining the distribution of disperse-phase vapors 0v 
in the gas flow takes the form 

dpv = a2Apv -I- qb. (1 )  
dx 
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Here, a 2 = Dt/vg, # = I/vg, where D t is the turbulent diffusion coefficient; Vg is the ve- 
locity of the gas flow; 1-is the mass intensity of the vapor sources. We take the Laplacian 
in the right side of (i) in the YZ plane. We place the coordinate origin in a flow section 
where disperse-phase vapors are absent. Such a section would obviously exist, for example, 
in the event of the use of a direct-jet nozzle and would coincide with the plane containing 
the nozzle axis. Then the initial condition for Eq. (i) takes the form: 951x=o = 0. The 
solution of the stated Cauchy problem is given by the following expression: 

Pv (x' "g' z ) = - - ~ l  i J" 
4r~a~ o u', ~' 

c> (x' ,  y ' ,  z ')  

X - -  X" 
exp{. ( 9 - - 9 " ) " + ( z - - z ' ) ~ } d x ' d g ' d z ' .  

4a* (x - -  x ' )  
(2) 

The integrals of y' and z' are taken over the regions where the function r y, z) is non- 
trivial. 

To obtain the final solution of the problem, it is necessary to find an explicit ex- 
pression for the mass intensity of the vapor sources. A study of the dynamics of evaporation 
of individual drops [4] showed that the following approximate relation between the running 
drop diameter 6 and the distance from the point of introduction is satisfied: 

x = l , ( d m ) (  6~ ~[l~(dm) + I 6.(dry) l-- 
k d,. / L l~ (d,.) 0 (40 . . . .  - T o  " (3) 

Here, /in(dm), /f(dm) are the distances at which a drop of diameter d m begins to evaporate 
and at which it has completely evaporated, respectively; 6o is the initial diameter of the 
drop. Differentiating (3) with respect to time and changing over from the drop diameter to 
the drop mass, we obtain the following expression for the rate of drop evaporation: 

dm = __ np~g]v~ (4) 
dT 41 s (din) (6o/dm) ~ (1 -- lin (dm)/l, (din))' 

where Pk is the density of the drop; v x is the component of its running velocity along the X 
axis. The number of drops located in the volume dV and having initial diameters within the 
range from 6o to 6o + d~o is obtained from determining gm(r, 6): 

dn 6g~ (r, 60) 
= apk6 ~ " d6odV. (5 )  

If a drop with the initial diameter 6o is not completely evaporated up to the given point r, 
then the number of such drops coincides with (5). Having multiplied the right side of (4) by 
(5), we obtain the mass intensity of the vapor sources: 

3 gm (r, 6o) 6 d6o. (6) 
I (r) ---- 2/I (din) (I - -  l~n (d~)/l/(din)) ~ (6Jdm) 2 6~ 

This integral is taken over all 6o at the given point. It should be noted that 6 is expressed 
through 6o from (3). Thus, (2), (3), and (6) completely solve the problem of determining 
the density of the vapor in the gas flow. 

For a direct-jet nozzle, when the mass intensity of the vapor sources is concentrated in 
a layer of thickness D (where D is the diameter of the nozzle) about the plane Z = 0 (see 
[i]), Eq. (2) can be simplified: 

----TD i exp 4a ~ (x - -  x ' )  ' ~ (x ' ,  9 ')  exp Pv 4~a--. x - -  x' 
C y" 

(Y -- Y')~ l dx ' d /  o 
f 4a ~ (x - -  x'). 

As an example of the use of the above-derived relations, below we present curves of the 
distribution of particles of K2COs I and their vapors in a gas flow with the pressure Pg = 0.5 
MPa, temperature T~ = 2800~ and velocity v~ = 100 m/sec. The disperse phase was introduced 
with a direct-jet nozzle perpendicular to the flow and characterized by the Rosen--Rammler par- 
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Fig. I. Distribution of a disperse phase and its vapor in the axial section of a 
flow at different distances from the site of ~troduction: I) disperse phase without 
allowance for evaporation; 2) residue of disperse phase with allowance for evapora- 
tion; 3) vapor distribution (i, 2 -- ~, sec/m2; 3 -- E m, sec/m3); a) X = 0.5 m; b) 
2; c) 4 m. y, m. 

Fig. 2. Patte~ of v~or distribution in the fl~ cross section 2 m from the site of 
introduction (direct-jet nozzle directed along the Y axis; Y and Z, cm): i) ~ = 
0.37 sec/mS; 2) 0.3; 3) 0.25; 4) 0.2; 5) 0.15; 6) 0.i; 7) 0.05 sec/m 3. 

ticle-size distribution function. The median di~eter of the particles ~ = i00 ~m, the dis- 
tribution ind~ n = 2, and the rate of introduction Vo = 15 m/sec. The channel diameter was 
taken equal to one meter. The tu~ulent diffusion coefficient was calculated from formulas 
[3] for a developed flow. 

Figure i shows the pattern of transverse distributions of particles and their vapors in 
the axial section of t~ flow at different distances X from the site of introduction. Here, 

= ~m/D, where M is t~ discharge velocity of the nozzle. The dashed line corresponds to 
that particle fraction which did not ev~orate before reaching the given section. It is ap- 
parent from the figure bat practical~ all of be particles have evaporated by the time a 
distance of 4 m has been rea~ed. The dot-dash line corresponds to the vapor distribution. 
It should be noted that here and s~sequently, Pv = ~m, so that the numbers of the cu~es 
of particle and vapor mass distr~ution differ by a multiplier equal to the diameter of the 
nozzle. Thus, the vapor distribution densi~ in the chosen section is an order of magnitude 
less than disperse-phase distribution de~ity, which corresponds to its diffusive resorption 
in be perpendicular direction. This is illustrated by Fig. 2, whi~ sh~s the vapor distri- 
bution pattern under bese conditions in a section located 2 m from the site of introduction. 
The nozzle was directed along the Y ~is, and the lines of constant concentration are sym- 
metrical relative to it. It c~ be seen ~at there is a substantial decrease in concentra- 
tion at distances on the order of i00 ~. 

i. 

2o 

3. 
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